2019. 05. 10

Minden amit a RAM-ról tudni érdemes 1. rész

A rendszermemória napjainkban, azaz a RAM-ok világa.

Sokakban felmerülhet az a kérdés, hogy mi is az a RAM, azaz "random acces memory" magyarul, a közvetlen hozzáférésû memória. Napjainkban rengeteg félével és fajtával találkozhatunk foglalattól, órajelen át, a memória méretéig, gyártók soraival kell szembenéznünk. Mitõl jobb egy memória a másiknál? Milyen processzorokhoz milyen memória passzol? Mire érdemes odafigyelni memóriák vásárlásánál? Ez a cikksorozat arra hivatott hogy megpróbáljuk összefoglalni ezekre a kérdésekre a választ. 

Kezdjük talán az alapoknál, mi az a RAM, és milyen feladatot lát el? A RAM a számítógépünk elsõdleges memóriája, ez tárolja az összes olyan adatot és programot amit a processzornak végre kell hajtania, azonban csak addig képes eltárolni õket, amíg feszültség alatt van a számítógép, áramtalanításakor az összes adat elveszik belõle. A neve abból ered, hogy bármelyik memóriachip részében is helyezkedik el a keresett adat, ugyanannyi idõ alatt lekérhetõ függetlenül az elhelyezkedéstõl. A RAM mellett még egy rendszermemória megtalálható, mégpedig a processzornál, ez pedig a "cache" azaz a gyorsítótár.


SIMM


A memória alapja egy NYÁK-lap. Ezek külsõ burkolatokkal, érintkezõkkel vannak ellátva, amik lehetnek DIMM, SIMM vagy SO DIMM típusúak. A SIMM a 80-s évek elején jelent meg a piacon, és egészen a 90-s évek végéig jelen volt, azonban a DIMM modulok megjelenésével elvesztette jelentõségét. Mi a különbség a kettõ között? A SIMM ( = "single in-line memory module") mind a két oldalán redundás érintkezõk vannak és csupán 32 bites adatcsatornával rendelkezik, míg a DIMM (( = "dual in-line memory module" )) mindkét oldalán különbözõ érintkezõk helyezkednek el, és adatcsatornája 64 bites. Ez az Intel 64 bites sínszélességgel  gyártott processzorainak megjelenésével egyértelmûen a DIMM modulok használatát helyezte elõnybe a 2000-es évek elején. Napjainkban is ezeket a foglalatokat használjuk személyes és szervergépeinkben. A SO DIMM ((="small outline dual in-line memory module")) ennek az érintkezõnek a kisebb méretû változata, nagyjából méretében a fele. Ezeket fõleg olyan területeken használják ahol limitált a hely a memóriáknak, például laptopoknál, notebookoknál, kis méretû számítógépeknél, nagyobb irodai nyomtatóknál, routereknél. Napjainkban a memóriák nagy része hûtõbordával szerelt, ami nevébõl eredõen a memória melegedésének csökkentését szolgálja. Ezeknek rengeteg változata létezik, különbözõ színû, akár RGB-s darabokkal is találkozhatunk.

SODIMM memória

A lapokon továbbá megtalálható több darab memóriachip, amelyek apró cellákra vannak osztva, ebben tárolva az adatokat. A processzor a memóriavezérlõegység segítségével ezekbõl a cellákból kéri le az információt, azonban ez idõbe kerül. Ezt az idõt nevezzük késleltetési értéknek (= "Column Access Strobe (CAS) latency" ), memóriák nevében "CL" és egy érték mutatja, például: CL16. Egy memória sebességét nagyban befolyásolhatja a késleltetési érték.



A memóriát két nagy típusra tudjuk bontani:
A statikus RAM-ra (SRAM "Static Random Access Memory") és a dinamikus RAM-ra (DRAM "Dynamic Random Access Memory").
A statikus memóriánál egy memória cellát egy két állapotú tároló alkot, több tranzisztorral szerelve. Sebessége jóval nagyobb a DRAM moduloknál, azonban jóval drágább kivitelezni, ezért alkalmazzák fõleg a már feljebb említett gyorsítótáraknál. A dinamikus memóriánál egy memória cellán egy kondenzátor és egy tranzisztor található. A DRAM-ok elterjedését fõleg az olcsósága és a kisebb mérete növelte.

SIMM

Lassan el is érünk a ma használt memóriaszabványig, a DDR SDRAM ("double data rate SDRAM")  kétszeres átviteli sebességû memóriákig. Ennek két verziója van. Az egyik amit rendszer memóriának, a másik pedig amit grafikus memóriának használunk. Ebben a cikkben csak az elsõvel fogunk foglalkozni. Elnevezése arra utal, hogy egy azonos órajelû SDRAM-hoz képest kétszer annyi sávszélességgel rendelkezik. Ezt az órajelek és az idõzítések szigorú szabályozásával éri el. Elsõ változatát 2000-ben jelentették be, ezt nevezték DDR SDRAM-nak, azonban mára már DDR1-nek nevezzük legtöbbször. Az évek során egyre nagyobb órajellel, sávszélességgel, és egyre szorosabb idõzítésekkel látták el ezeket a memóriákat. A legutolsó változatot 2014-ben kezdték el forgalmazni DDR4-s jelzéssel. Ezek a modulok a DDR3-ssal szemben kisebb fogyasztással azonban jóval nagyobb memória mérettel rendelkeznek.

DRR4 Trident

Tehát amellett hogy megtudtuk, hogy az idõzítés fontos tényezõ egy memória kiválasztásánál, mit kell még figyelembe vennünk? A DDR4-s memóriák 4, 8 és 16 gigabyte-os méretekben jelentek meg. Napjainkban egy játékra használt PC-nek ajánlott legalább 16 gigabyte memóriával rendelkeznie. Azok akik valamilyen nagyobb erõforrás igényû munkára használják a számítógépüket (Például: videóvágás, 3d-s vizualizáció), ajánlott ennél több memóriát beszerezni. A másik fontos tényezõ a memóriák órajele. A nevébõl adódóan ("double date rate") a memóriáknál az effektív órajelet szokás megjelölni, nem pedig a ténylegeset. Például egy 3200 MHz-es memóriánál az effektív órajel a 3200, viszont a tényleges órajele "csak" 1600 MHz. DDR4-s memóriák esetében 1600-4000 MHz-s effektív órajellel rendelkezõ memóriákról beszélhetünk.  A memória órajele és idõzítése adja meg a tényleges sávszélességet, ezért fontos a minél kisebb idõzítésû, azonban minél nagyobb órajelû memóriák kiválasztása.

Ha szeretnéd jobban megismerni a memóriák kínálatát napjainkban, érdekel a következõ generáció jelenlegi állása, esetleg vásárlás elõtt állsz, javaslom olvasd el az elkövetkezõ cikkünket ezzel kapcsolatban.

DM-PCX

2019. 05. 10

Mi a BIOS, a CMOS és hogyan érjük el õket?
Összefoglalónk az alaplapok és egyben a PC-k rejtélyes kezelõfelületétét mutatja be
Megvettem az elsõ számítógépemet, csak a BIOS-szal ne kelljen vacakolnom. Egyáltalán mi az és mit kezdjek vele? Sok felhasználó gondol így elsõ számítógépére, de még sokszor azok is, akik már egy ideje használják és nem most húzták le a fóliát frissen összeszerelt gépükrõl. A következõ sorok arra tesznek kísérletet, hogy bemutassák, mi is az a BIOS, hogyan jutunk oda a különbözõ gyártók alaplapjain, és mit tehetünk, ha egyes beállítások miatt gondokat tapasztalunk.
A BIOS
A BIOS a Basic Input/Output System rövidítése és egy olyan beépített firmware, melyet minden számítógép esetében az alaplapon találunk és alapvetõen a rendszerindításért felel. Egy olyan aprócska szoftver, mely felismeri, diagnosztizálja és kezeli egy számítógép legfontosabb alkatrészeit, tehát a processzort és a RAM-ot, melyek nélkül a gép el sem indulna, illetve a háttértárakat és az USB portokat melyek az operációs rendszer betöltéséhez, illetve a kezeléséhez szükséges eszközöket, perifériákat tartalmazhatják.
Bár a Windows és a Linux számos lehetõséget és módot kínál egyes beállítások elvégzésére, néhány változtatás csak a rendszer BIOS-án keresztül végezhetõ el. A BIOS segítségével ellenõrizhetõ, hogy a gép minden összetevõje megfelelõen mûködik-e, mielõtt a Windows rendszer
Amit az alaplapokról tudni érdemes - 2. rész
Mi a VRM szerepe egy alaplapon, miben térnek el a lapkészletek, és milyen alaplapok közül választhatunk?
Cikkünk elsõ fejezete az alaplapok szerepét tárgyalta, kitérve az alapvetõ felszereltségre, amelyek tekintetében többé-kevésbé minden lap ugyanazt kínálja. De mik azok a részletek, amelyek nagyobb mértékben is megkülönböztetik ezeket a hardvereket? A következõkben a feszültségszabályozást végzõ VRM, a chipsetek és az igényeink és pénztárcánk szerinti választási lehetõségek következnek.
A VRM
Az alaplapi VRM-ek meglepõen fontos részei minden modern alaplapnak, de gyakran figyelmen kívül hagyják õket a marketing és a kritikák során is, vagy nem magyarázzák el megfelelõen, ha egyáltalán megemlítik õket. Mik azok az alaplapi VRM-ek, miért említik õket együtt a túlhajtással, és milyen kulcsfontosságú specifikációkat kell megérteni ahhoz, hogy megalapozott döntést hozzunk vásárlás elõtt?
A VRM a Voltage Regulator Module (feszültségszabályozó modul) rövidítése, és szerencsére ez a név eléggé magától értetõdõ. Minden alaplapon van egy feszültségszabályozó modul, amelyet a CPU közelében helyeznek el, hogy szabályozza a feszültséget, amely a tápegységtõl és a tápkábelektõl a CPU aljzatához jut. Annak ellenére, hogy a CPU önmagában is elég sok energiát képes fogyasztani, mégis szüksége van arra, hogy ezt az energiát kezeljék és szabályozzák,
Amit az alaplapokról tudni érdemes - 1. rész
Az alaplap egy asztali számítógépben és amit még tudni érdemes
Jól tudjuk, hogy számítógépünk szívét és lelkét a processzor és a videokártya párosa adják, pláne, ha játékra vagy komolyabb grafikai munkára vásárlunk számítógépet. Azt azonban továbbra sem felejthetjük el, hogy a számunkra kiemelten fontos összetevõk nem feltétlenül a legfontosabb összetevõk. Minõségi tápegység nélkül gépünk egy instabil idõzített bomba lehet, és talán még el sem indul, megfelelõ alaplap nélkül pedig ugyan mibe pakolnánk az izmos CPU-t és méregdrága videokártyát? A következõkben az alaplap általános mûködését és funkcióit igyekszünk bemutatni, hogy megértsük, miért fontos egy PC-s felhasználó számára. A cikk folytatásában kitérünk a különbözõ árkategóriákra is, amelyek különbözõ minõséget és lehetõségeket kínálnak a felhasználóknak.
Mi is az alaplap?
Ha valaha is raktunk össze vagy szedtünk már szét számítógépet, akkor láthattuk azt az egyetlen alkatrészt, amely mindent összeköt – az alaplapot. Ahogy a neve is árulkodik róla, egy PC esetén ez lesz az alap, amire építkezni fogunk. Ez az a központi áramköri lap, amely mindazokat az alkatrészeket és csatlakozókat tartalmazza, amelyek lehetõvé teszik, hogy a számítógép minden eleme áramot kapjon és kommunikáljon egymással. Jellemzõen számos beépített funkcióval büszkélkedhetnek, és közve
Értékelések
Az értékeléshez be kell jelentkezned. Belépés
PCX 2006-2024.
Kapcsolat: [email protected]
Cookie / süti kezelés Az oldalon cookie-kat használunk, melynek részleteit itt találod.